Lignin nanoparticles (LNPs) loaded with silver nanoparticles have exhibited significant application potential in antibacterial and catalytic fields. However, the high solubility of LNPs in silver ammonia solution makes it difficult to achieve the reduction of Ag+ and the adsorption of silver nanoparticles. In this study, a protecting agent, terephthalic aldehyde (TA) is used to block lignin condensation and introduce aldehyde groups onto the lignin molecular backbone during lignin extraction. Furthermore, the TA stabilized lignin (TASL) is cross-linked with bisphenol A diglycidyl ether (BADGE) to enhance its alkali resistance performance and subsequently prepared into alkali-resistance BADGE- TASL hybrid LNPs (BADGE- TASL hy-LNPs) by anti-solvent precipitation and self-assembly. Because the presence of a large number of aldehyde groups in TASL compensates for the loss of phenolic hydroxyl groups caused by crosslinking reactions, a high loading of silver nanoparticles of 54.00% is obtained after redox reaction and adsorption in silver ammonia solution. When the BADGE-TASL hy-LNPs@Ag is used as an antibacterial agent, its inhibition efficiency reached ≈99%. Besides, the BADGE-TASL hy-LNPs@Ag can serve as a printing material for the preparation of conductive printing ink. Therefore, this study provides a strategy for lignin functionalization and application in printed electronics and antimicrobial fields.