A variety of molecular and cellular changes distinguish the multifaceted biological process of aging. Recent studies in this decade have demonstrated the essential role of extracellular vesicles (EVs) in the aging process. Mitochondrial malfunction and increased oxidative stress are major contributors for the aging process. This review investigates the role of EVs in intercellular communication, tissue regeneration, and inflammation in the context of aging. We also discuss the exosome and its utility to reduce oxidative stress, which is a key part of aging, as well as the possibility of using the exosomes (EVs) as anti-aging drugs. Changes in cargo composition can influence the aging phenotype and impact the functionality of cells and tissues. Additionally, the role of EVs in oxidative stress during the aging process addresses potential treatment strategies and the development of biomarkers for age-associated disorders. The review also highlighted the role of exosomes in providing antioxidant properties, which help reduce excessive reactive oxygen species (ROS) and strengthen cellular defenses against oxidative stress. Additionally, it emphasized the role of extracellular vesicles (EVs) in age-related pathologies, such as neurodegenerative diseases, cardiovascular disorders, and immunosenescence, offering insights into targeted interventions for promoting healthy aging. This article provides a comprehensive analysis of the current body of knowledge regarding the therapeutic effects of EVs on aging, with a particular emphasis on the implications of this emerging field of research and its relationship to oxidative stress.
Read full abstract