Groundwater, a vital source of water supply, is currently experiencing a pollution crisis that poses a significant risk to human health. To understand the hydrochemical formation mechanisms, quality and risk to human health of groundwater in the upper reaches of the Wulong River basin, 63 sets of groundwater samples were collected and analyzed. A combination of mathematical statistics, correlation analysis, Gibbs diagram, ion ratio, and cation exchange were comprehensively employed for hydrochemical analysis, and further water quality index (WQI) and human health risk assessment were conducted. The results indicate that groundwater is generally neutral to weakly alkaline. The dominant cations in the groundwater are Ca2+ and Mg2+, while the main anions are HCO3- and SO42-. The hydrochemical types of groundwater mainly include HCO3·SO4-Ca, HCO3-Ca and HCO3-Na. The diverse hydrochemical types are mainly due to the fractured and discontinuous nature of the aquifers. The hydrochemical characteristics are influenced by the dissolution of silicate and carbonate minerals, cation exchange processes, and anthropogenic pollution. The presence of NO3- in groundwater is primarily attributed to agricultural activities. The groundwater is mainly categorized as "Good" (36.6%) and "Poor" (60.8%). "Very poor" and "Excellent" categories are rare, accounting for only 1.2% and 1.4%, respectively, and no samples are classified as "Non-drinkable". The Ewi for NO3- is the highest, indicating severe contamination by anthropogenic NO3- pollution. Human health risk assessment reveals that water samples posing exposure risks account for 82.54% for children and 79.37% for adults. This study highlighted that anthropogenic nitrate pollution has deteriorated groundwater quality, posing risks to human health. It also suggests an urgent need to enhance research and protective measures for groundwater in similar regions, such as the Shandong Peninsula.
Read full abstract