BackgroundDisease can drastically impair common bean (Phaseolus vulgaris L.) production. Anthracnose, caused by the fungal pathogen Colletotrichum lindemuthianum (Sacc. and Magnus) Briosi and Cavara, is one of the diseases that are widespread and cause serious economic loss in common bean.ResultsTranscriptome analysis of the early response of common bean to anthracnose was performed using two resistant genotypes, Hongyundou and Honghuayundou, and one susceptible genotype, Jingdou. A total of 9,825 differentially expressed genes (DEGs) responding to pathogen infection and anthracnose resistance were identified by differential expression analysis. By using weighted gene coexpression network analysis (WGCNA), 2,051 DEGs were found to be associated with two resistance-related modules. Among them, 463 DEGs related to anthracnose resistance were considered resistance-related candidate genes. Nineteen candidate genes were coexpressed with three resistance genes, Phvul.001G243600, Phvul.001G243700 and Phvul.001G243800. To further identify resistance genes, 46 candidate genes were selected for experimental validation using salicylic acid (SA) and methyl jasmonate (MeJA). The results indicated that 38 candidate genes that responded to SA/MeJA treatment may be involved in anthracnose resistance in common bean.ConclusionsThis study identified 38 resistance-related candidate genes involved in the early response of common bean, and 19 resistance-related candidate genes were coexpressed with anthracnose resistance genes. This study identified putative resistance genes for further resistance genetic investigation and provides an important reference for anthracnose resistance breeding in common bean.