Background: Recently reported anterolateral structure reconstructions (ALSRs) to augment intra-articular anterior cruciate ligament reconstruction (ACLR) use various femoral attachment sites, and their biomechanical effects are still unknown. Hypothesis: ALSR concomitant with ACLR would control anterolateral rotational instability better than ACLR alone, and if ALSR had different femoral attachment sites, there would be different effects on its control of anterolateral rotational instability. Study Design: Controlled laboratory study. Methods: Twelve fresh-frozen hemipelvis lower limbs were included. Anterior tibial translation during the Lachman test and tibial acceleration during the pivot-shift test were measured with a 3-dimensional electromagnetic measurement system in situations with the (1) ACL and ALS intact, (2) ACL and ALS cut, (3) ALSR without ACLR (ALSR alone), (4) ACLR without ALSR (ACLR alone), and (5) ALSR with ACLR. Three femoral attachment sites were used for ALSR: F1, 2 mm anterior and 2 mm distal to the lateral epicondyle; F2, 4 mm posterior and 8 mm proximal to the lateral epicondyle; and F3, over-the-top position for the lateral extra-articular tenodesis. The Steel test and Wilcoxon signed rank test were used for statistical analysis. Results: Anterior tibial translation during the Lachman test in the ACL and ALS–cut state was significantly larger than it was in the ACL and ALS–intact state, while its difference disappeared after ACLR. As for the pivot-shift test, additional ALSR with F2 to ACLR significantly decreased the acceleration (P = .046), although additional ALSR with F1 and F3 showed no significant effect. Conclusion: ALSR with the femoral attachment site 4 mm posterior and 8 mm proximal to the lateral epicondyle in addition to ACLR played a role in reducing anterolateral rotational instability the most effectively among the measured attachment sites. Clinical Relevance: The present data will contribute to determine the appropriate femoral attachment site for ALSR to better control anterolateral rotational instability after ACL reconstruction.
Read full abstract