It remains unknown to what extent ictal scalp EEG can accurately predict the localization of the intracerebral seizure onset in presurgical evaluation of drug-resistant epilepsies. In this study, we aimed to define homogeneous ictal scalp EEG profiles (based on their first ictal abnormality) and assess their localizing value using simultaneously recorded scalp EEG and stereo-EEG. We retrospectively included consecutive patients with drug-resistant focal epilepsy who had simultaneous stereo-EEG and scalp EEG recordings of at least 1 seizure in the epileptology unit in Nancy, France. We analyzed 1 seizure per patient and used hierarchical cluster analysis to group similar seizure profiles on scalp EEG and then performed a descriptive analysis of their intracerebral correlates. We enrolled 129 patients in this study. The hierarchical cluster analysis showed 6 profiles on scalp EEG first modification. None were specific to a single intracerebral localization. The "normal EEG" and "blurred EEG" clusters (early muscle artifacts) comprised only 5 patients each and corresponded to no preferential intracerebral localization. The "temporal discharge" cluster (n = 46) was characterized by theta or delta discharges on ipsilateral anterior temporal scalp electrodes and corresponded to a preferential mesial temporal intracerebral localization. The "posterior discharge" cluster (n = 42) was characterized by posterior ipsilateral or contralateral rhythmic alpha discharges or slow waves on scalp and corresponded to a preferential temporal localization. However, this profile was the statistically most frequent scalp EEG correlate of occipital and parietal seizures. The "diffuse suppression" cluster (n = 9) was characterized by a bilateral and diffuse background activity suppression on scalp and corresponded to mesial, and particularly insulo-opercular, localization. Finally, the "frontal discharge" cluster (n = 22) was characterized by bilateral frontal rhythmic fast activity or preictal spike on scalp and corresponded to preferential ventrodorsal frontal intracerebral localizations. The hierarchical cluster analysis identified 6 seizure profiles regarding the first abnormality on scalp EEG. None of them were specific of a single intracerebral localization. Nevertheless, the strong relationships between the "temporal," "frontal," "diffuse suppression," and "posterior" profiles and intracerebral discharge localizations may contribute to hierarchize hypotheses derived from ictal scalp EEG analysis regarding intracerebral seizure onset.
Read full abstract