Gulf War Illness affects 25–32% of veterans from the 1990–91 Persian Gulf War. Post-exertional malaise with cognitive dysfunction, pain and fatigue following physical and/or mental effort is a defining feature of Gulf War Illness. We modelled post-exertional malaise by assessing changes in functional magnetic resonance imaging at 3T during an N-Back working memory task performed prior to a submaximal bicycle stress test and after an identical stress test 24 h later. Serial trends in postural changes in heart rate between supine and standing defined three subgroups of veterans with Gulf War Illness: Postural Orthostatic Tachycardia Syndrome (GWI-POTS, 15%, n = 11), Stress Test Associated Reversible Tachycardia (GWI-START, 31%, n = 23) and Stress Test Originated Phantom Perception (GWI-STOPP, no postural tachycardia, 54%, n = 46). Before exercise, there were no differences in blood oxygenation level-dependent activity during the N-Back task between control (n = 31), GWI-START, GWI-STOPP and GWI-POTS subgroups. Exercise had no effects on blood oxygenation level-dependent activation in controls. GWI-START had post-exertional deactivation of cerebellar dentate nucleus and vermis regions associated with working memory. GWI-STOPP had significant activation of the anterior supplementary motor area that may be a component of the anterior salience network. There was a trend for deactivation of the vermis in GWI-POTS after exercise. These patterns of cognitive dysfunction were apparent in Gulf War Illness only after the exercise stressor. Mechanisms linking the autonomic dysfunction of Stress Test Associated Reversible Tachycardia and Postural Orthostatic Tachycardia Syndrome to cerebellar activation, and Stress Test Originated Phantom Perception to cortical sensorimotor alterations, remain unclear but may open new opportunities for understanding, diagnosing and treating Gulf War Illness.