The present study proposes an L-shaped coplanar strip dipole antenna for sensing the presence of adulterants in liquid food samples. The proposed antenna dimensions are optimized using ANSYS HFSS, and a prototype is fabricated and validated. The sensing region is optimized based on the current distribution and measured reflection coefficients. Adulterant detection is performed by monitoring the variation in the reflection coefficient and resonance frequency of the antenna sensor. To verify the effectiveness of the proposed planar dipole as a sensor, an adulterant, which is hydrogen peroxide, is added to various liquid samples – milk, pineapple juice, and mango juice. The reflection coefficient of the antenna sensor is found to vary with various concentrations of the samples in the study. The sensitivity analysis of the antenna sensor and the repeatability of the results is also analyzed in the work. The experimental analysis assures the use of the proposed antenna as a sensor for the detection of adulterants in liquid food samples.
Read full abstract