This study used the radioisotopes (109)Cd and (65)Zn to explore the uptake, retention and organ distribution of these nonessential and essential metals from solution by the freshwater decapod crustacean Macrobrachium australiense. Three treatments consisting of cadmium alone, zinc alone, and a mixture of cadmium and zinc were used to determine the differences in uptake and efflux rates of each metal individually and in the metal mixture over a three-week period, followed by depuration for 2 weeks in metal-free water using live-animal gamma-spectrometry. Following exposure, prawns were cryosectioned and the spatial distribution of radionuclides visualized using autoradiography. Metal uptake and efflux rates were the same in the individual and mixed-metal exposures, and efflux rates were close to zero. The majority of cadmium uptake was localized within the gills and hepatopancreas, while zinc accumulated in the antennal gland at concentrations orders of magnitude greater than in other organs. This suggested that M. australiense may process zinc much faster than cadmium by internally transporting the accumulated zinc to the antennal gland. The combination of uptake studies and autoradiography greatly increases our understanding of how metal transport kinetics and internal processing may influence the toxicity of essential and nonessential metals in the environment.