Cockroaches, like many other animal species, form aggregations in which social stimuli from conspecifics can alter the physiology, morphology, or behavior of individuals. In adult females of the German cockroach, Blattella germanica, social isolation slows oocyte development, sexual maturation, and sexual receptivity, whereas social interactions as minimal as between just two females accelerate reproduction; however, the sensory modalities and pathways that mediate these physiological and behavioral changes are poorly understood. We explored the roles of visual, olfactory, and tactile cues in the reproductive physiology of German cockroach females, and whether their effects are species-specific and related to circadian time. Our results show that tactile cues are the primary sensory input associated with social conditions—with no evidence for involvement of the visual and olfactory systems—and that the antennae play an important role in the reception of these tactile cues. This conclusion is supported by the observation that interactions with other insect species of similar or larger size and with similar antennal morphology also stimulate oocyte development in B. germanica. Social facilitation of reproduction is expected to be influenced by the circadian timing system, as females engage in more social contact during the day when they shelter in aggregations with conspecifics. Surprisingly, however, the female's reproductive rate was unresponsive to social interactions during the photophase, whereas social interactions as short as two hours during the scotophase were sufficient to induce faster reproduction.We discuss the adaptive significance of these sensory-neuroendocrine responses in the German cockroach.
Read full abstract