How to disentangle the possible genuine quenching of gA caused by scale anomaly of QCD parameterized by the scale-symmetry-breaking quenching factor qssb from nuclear correlation effects is described. This is accomplished by matching the Fermi-liquid fixed point theory to the “Extreme Single Particle (shell) Model” (acronym ESPM) in superallowed Gamow–Teller transitions in heavy doubly-magic shell nuclei. The recently experimentally observed indication for (1−qssb)≠0—that one might identify as “fundamental quenching (FQ)”—in certain experiments seems to be alarmingly significant. I present arguments for how symmetries hidden in the matter-free vacuum can emerge and suppress such FQ in strong nuclear correlations. How to confirm or refute this observation is discussed in terms of the superallowed Gamow–Teller transition in the doubly-magic nucleus 100Sn and in the spectral shape in the multifold forbidden β decay of 115In.