The complex magnetic and gravity anomaly fields of the Southern Tyrrhenian Sea provide a record of the complicated properties and evolution of the underlying crust. Geologic interpretation of these anomalies is hindered by the effects of anomaly superposition and source ambiguity inherent to potential field analysis. A common approach to minimizing interpretational ambiguities is to consider analyses of anomaly correlations. Spectral correlation filters are used to separate positively and negatively correlated anomaly features based on the correlation coefficient given by the cosine of the phase difference between common wavenumber components. This procedure is applied to reduced-to-pole magnetic and first vertical derivative gravity anomalies for mapping correlative crustal magnetization and density contrasts. Adding and subtracting the standardized outputs of the filters yield summed (SLFI) and differenced (DLFI) local favorability indices that, respectively highlight positive and negative feature correlations in the anomaly data sets. Correlative maxima mainly reflect volcanic structures, and secondarily intrusive bodies and pre-Tortonian carbonates of the Maghrebian chain and the basement rocks of the Sardinia eastern margin. Correlative minima mostly mark sediment-filled peri-Tyrrhenian structural basins related to the Pliocene extensional tectonics, and intra-slope marine depressions related to post-Pliocene and still-active compressional tectonics off Northern Sicily. Prominent inverse anomaly correlations mainly reflect crustal features around the southern margin of the Tyrrhenian Sea that include higher density, lower magnetization pelagic-to-terrigenous and flysch-type nappes of the Sicilian-Maghrebian chain, as well as lower density, higher magnetization sediments filling depressions of the chain, and syn-rift sediments of Southeastern Sardinia.