We study scalar quasinormal modes in a D3/D7 system holographically dual to a quantum field theory with chiral symmetry breaking at finite temperature. From the bottom-up approach, we consider a nontrivial dilaton profile which is responsible for the anomalous dimension of the quark condensate. It depends on a new parameter q in the model. By varying this parameter, we study the behavior of the massive and massless scalar quasinormal modes. The numerical method that we use is the spectral method, and we find that there is no pure imaginary mode for the massless case but it appears by increasing the parameter q. It is known that this mode becomes tachyonic for massive cases. Then we turn on a pseudoscalar field and using a simple ansatz study its effect on the quasinormal modes of the scalar field. By varying the parameter of the nontrivial dilaton profile in the model, we qualitatively study quasinormal modes in walking theories.