Molybdenum dioxide (MoO2) is regarded as a potential anode for lithium-ion batteries due to its highly theoretical specific capacity. However, its further application in lithium-ion battery is largely limited by insufficient practical discharge capacity and cyclic performance. Here, MoO2nanoparticles are in-situ grown on three-dimensional nitrogen doped carbon nanotubes (NCNTs) on nickel foam substrate homogeneously using a simple electro-deposition method. The unique structural features are favorable for lithium ions insertion and extraction and charge transfer dynamics at electrode/electrolyte interface. As a proof of concept, the as-synthesized nanocomposites have been employed as anode for lithium-ion battery, exhibiting a reversible and significantly improved discharge capacity of ∼517 mA h g-1at the current density of 150 mA g-1as well as superior cycle and rate performance. The first-principle calculations based on density functional theory and electrochemical impedance spectroscopy results demonstrate a reduced energy barrier of lithium ions diffusion, improved lithium storage behavior, reduced structure collapse, and significantly enhanced charge transfer kinetics in MoO2/NCNTs nanocomposites with respect to MoO2powder. The excellent performance makes as-prepared MoO2/NCNTs nanocomposites promising binder-free anode for high performance lithium-ion batteries. This work also provides important theoretical insights for other state-of-the-art batteries design.
Read full abstract