Intervertebral disc degeneration (IVDD) is a widespread, disabling condition that significantly contributes to the global burden of musculoskeletal disorders. To better understand its underlying mechanisms and explore potential therapeutic strategies, animal models serve as valuable tools for simulating the complicated pathophysiology of IVDD. Rodent models are extensively used due to their genetic similarities to humans, cost-effectiveness, and rapid attainment of maturity. These models enable the study of specific molecular pathways involved in IVDD, such as inflammation, matrix degradation, tissue repair, and disc microenvironment homeostasis. This review provides a comprehensive overview of the current status of rodent models used in IVDD research, highlighting their advantages, limitations, and contributions to our understanding of the disease. Specifically, we discussed various rodent models, including traumatic (such as needle puncture in the lumbar and coccygeal region, nucleotomy, and annulus fibrosus defect), non-traumatic (including compression models, lumbar spine instability, and bipedalism), chemically induced models (chymopapain, chondroitinase ABC), and genetically modified models. These models offer insights into the severity of IVDD under different conditions, such as trauma, aging, and genetics. In conclusion, rodent models remain indispensable tools for advancing our understanding of IVDD mechanisms and therapeutic interventions. Carefully selecting animal species and models can provide valuable insights that guide future clinical research and treatment approaches. Our review aims to leverage these models to identify therapeutic targets and strategies that may ultimately reduce the impact of IVDD on human health. PERSPECTIVE: This review describes the role of rodent models in IVDD, highlighting their utility in unraveling disease mechanisms and evaluating therapeutics. By replicating the complex molecular pathways and conditions of disc disease, like trauma, aging, and genetics, these models aid in identifying future advancements in managing lower back pain.
Read full abstract