ABSTRACTThe present article is concerned with analysis of large deflection of a heated thin annular sector plate with clamped edges under transient temperature distribution using Berger’s approximate methods. The prescribed surface temperature is at the top face of the plate whereas the bottom face is kept at zero temperature. In this study, the Laplace transform as well as the classical method have been used for the solution of heat conduction equation. The thermal moment is derived on the basis of temperature distribution, and its stresses are obtained using resultant bending moment and resultant forces per unit length. The calculations are obtained for the aluminium plate in the form of an infinite series involving Bessel functions, and the numerical results for temperature, deflection, resultant bending moments, and thermal stresses have been illustrated by graphs.
Read full abstract