Platanus acerifolia AIL genes PaAIL5a/b and PaAIL6b participate in FT-AP1/FUL-AIL pathways to regulate bud dormancy. In addition, PaAIL6a/b can promote flowering, and PaAIL5b and PaAIL6b affect floral development. Bud dormancy and floral induction are essential processes for perennial plants, they are both regulated by photoperiod, temperature, and hormones, indicating the existence of common regulators for both processes. AINTEGUMENTA-LIKE (AIL) genes regulate reproductive growth of annual plants, including floral induction and flower development, and their homologs in poplar and grape act downstream of the florigen gene FT and the floral meristem identity genes AP1/FUL and function to maintain growth and thus inhibit dormancy induction. However, it is not known whether AIL homologs participate in the reproduction processes in perennials and whether the Platanus acerifolia AIL genes are involved in dormancy. P. acerifolia is a perennial woody plant whose reproductive growth is strongly associated with dormancy. Here, we isolated four AIL homologs from P. acerifolia, PaAIL5a, PaAIL5b, PaAIL6a, and PaAIL6b, and systematically investigated their functions by ectopic-overexpression in tobacco. The findings demonstrate that PaAIL5a/b and PaAIL6b respond to short day, low temperature, and hormone signals and act as the components of the FT-AP1/FUL-AIL pathway to regulate the bud dormancy in P. acerifolia. Notably, PaAIL5a/b and PaAIL6b function downstream of PaFTL-PaFUL1/2/3 to inhibit the dormancy induction and downstream of PaFT-PaFUL2/3 to promote the dormancy release. In addition, PaAIL6a/b were found to accelerate flowering in transgenic tobacco, whereas PaAIL5b and PaAIL6b affected the flower development. Together, our results suggest that PaAIL genes may act downstream of different PaFT/PaFTL and PaFUL proteins to fulfill conservative and diverse roles in floral initiation, floral development, and dormancy regulation in P. acerifolia.