Abstract In the period of climate change, it is necessary to have biomass models for trees of all sizes to make precise estimations of biomass forest stocks to quantify carbon sequestration by forest cover. Therefore, we created allometric models of aboveground biomass in young Norway spruce (Picea abies [L.] Karst.) trees including main components, i.e. stem, branches and needles. The models used 200 sampled trees from 10 sites located in the central part of the Western Carpathians in Slovakia. The models, i.e. allometric regression relations implemented stem base diameter (diameter d0) and/or tree height. Moreover, using the derived allometric relations and a constant annual diameter increment of 10 mm, we calculated quasi-annual aboveground biomass production with regard to diameter d0. While stem had the largest contribution to aboveground biomass, followed by needles and branches, a different situation was revealed for the annual aboveground biomass production with the largest share of needles followed by stem and branches. Finally, we implemented the allometric models in a specific forest stand, where repetitive measurements were performed within 14 consecutive years. The results showed for example nearly 650 kg of the aboveground biomass per 102 m2 at the stand age of 10 years. The new biomass models can be applied to estimate the aboveground biomass stock in Norway spruce dominating stands in the Western Carpathians. Since the models are based on both diameter d0 and tree height a user can choose which variable is more suitable for particular conditions.
Read full abstract