Ankle joint stiffness is known to be modulated by co-contraction of the ankle muscles; however, it is unclear to what extent changes in agonist muscle activation alone affect ankle joint stiffness. This study tested the effects of varying levels of ankle muscle activation on ankle joint mechanical stiffness in standing and during the late stance phase of walking. Dorsiflexion perturbations were applied at various levels of ankle muscle activation via a robotic platform in standing and walking conditions. In standing, muscle activation was modulated by having participants perform an EMG target matching task that required varying levels of plantarflexor activation. In walking, muscle activation was modulated by changing walking speeds through metronome-based auditory feedback. Ankle stiffness was evaluated by performing a Least-squares system identification using a parametric model consisting of stiffness, damping, and inertia. The association between ankle muscle activation and joint stiffness was evaluated using correlation analyses. Linear regression models were used to determine the extent to which muscle activation contributed to ankle stiffness. An inclusive statistical approach (both classical and Bayesian analyses) was adopted to measure the statistical significance (p-value) and Bayes Factor (BF10). Results indicate that plantarflexor activity was positively correlated with ankle stiffness in both standing and walking (p<0.001, BF10>900), whereas dorsiflexor activity was negatively correlated with ankle stiffness in walking (p = 0.014, BF10 = 3.9) but not in standing (p = 0.725). Regression analyses indicated that ankle muscle activation predicted about 84% of the variation in ankle stiffness in standing and 45% in walking (p<0.001, BF10>100). Ankle muscle activation significantly contributes to ankle stiffness during standing and walking. The results highlight the role of muscle activation on maintaining joint stiffness and underscore the importance of accounting for muscle activation when measuring ankle stiffness in healthy as well as patient populations.
Read full abstract