In this work, we have investigated a new solution for charged anisotropic compact stellar system in the framework of an extended theory of symmetric teleparallel gravity known as f(Q, T) gravity with the non-metricity term Q and the trace T for energy–momentum tensor. We have constructed a complete set of the gravitational field equations for a non-linear function f(Q,T)=αQ+β(1+Q2)+λT\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f(Q,T)=\\alpha Q + \\beta (1+Q^{2}) + \\lambda T$$\\end{document} with α,β\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha , \\beta $$\\end{document} and λ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\lambda $$\\end{document} are dimensionless constant parameters in case of static spherically symmetric space-time. To evaluate the expression of relevant unknown constants interior space-time has been matched with exterior Reissner–Nordstro¨\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\ddot{\ extrm{o}}$$\\end{document}m metric. We have performed a graphical discussion in detail to test the behavior of physical parameters in the interior region of a stellar system like energy density, radial and tangential pressure, anisotropies of matter portion, electric field intensity etc. Also, to check the physical validity of our solutions, we have performed various tests viz., energy conditions, stability, mass–radius relation, surface redshift etc. The hydrostatic equilibrium position of our stellar system has been analysed through the TOV equation. Finally, we have determined that our stellar structure solutions satisfy all required physical conditions for viability and acceptability in the context of some pulsar like neutron stars. So our model can be used to characterise the neutron stars in f(Q, T) modified gravity.