Spin-lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates (T 1) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix. For randomly oriented powder samples, spin relaxation anisotropy changes dramatically with temperature, delineating multiple regimes of relaxation processes for each Cu(II) molecule studied. We show that traditional T 1 fitting approaches cannot reliably extract this information. Single-crystal T 1 anisotropy experiments reveal a surprising change in spin relaxation symmetry between these two regimes. We interpret this switch through the concept of a spin relaxation tensor, enabling discrimination between delocalized lattice phonons and localized molecular vibrations in the two relaxation regimes. Variable-temperature T 1 anisotropy thus provides a unique spectroscopic method to interrogate the character of nuclear motions causing spin relaxation and the loss of quantum information.
Read full abstract