AbstractMineral chemistry records the pressure and temperature conditions of lithospheric processes. Active tectonic margins, however, are subjected to non‐hydrostatic stresses wherein stress magnitudes vary directionally, and the impact of non‐hydrostatic stress on mineral chemistry is uncertain. The work of materials scientists F. Larché and J. Cahn provides a framework for quantifying how stress affects mineral chemistry. Crystallographically and mechanically anisotropic, multicomponent minerals will have different compositions as a function of their orientation under a fixed stress meaning that grain‐to‐grain compositional variation can be used to estimate stress. We develop two “orientation piezometry” methods that use the chemistry and orientations of multicomponent, anisotropic minerals to estimate stress. The first method uses chemistry and orientation (“coupled orientation piezometry”) whereas the second method uses composition alone (“decoupled orientation piezometry”). We apply the methods to clinopyroxene and feldspar solid solutions using synthetic data sets. The first method determines the full stress tensor whereas the second method can only determine the differential stress magnitude unless additional a priori information is specified. Plausible scenarios for orientation piezometry include minerals undergoing diffusion creep, recrystallized grains formed during dislocation creep, and minerals grown statically under stress. Preliminary application of the decoupled piezometer to the famous eclogite facies shear zones on Holsnøy, Norway, suggests differential stresses in the range of 300–900 MPa, broadly consistent with previous estimates from the area. Thus, orientation piezometry techniques may provide valuable constraints on geodynamic processes and insights into long‐standing geological problems such as the relationship between pressure and depth.
Read full abstract