ABSTRACTComputer Tomographic (CT) image data have become a standard basis for structural analyses of bony organs. In this context, regression functions between stiffness components and Hounsfields units (HU) from Computer Tomography, related to X-ray attenuation coefficients, are widely used for the definition of the (actually inhomogeneous and anisotropic) material behavior inside the organ. Herein, we suggest to derive the functional dependence of the fully orthotropic stiffness tensors on the Hounsfield units from the physical information contained in the X-ray attenuation coefficients: (i) Based on voxel average rules for the X-ray attenuation coefficients, we assign to each voxel the volume fraction occupied by water (marrow) and that occupied by solid bone matrix. (ii) By means of a continuum micromechanics representation for bone, which is based on voxel-invariant (species and whole bone-specific) stiffness properties of solid bone matrix and of water, we convert the aforementioned volume fractions into voxel-specific orthotropic stiffness tensor components. The micromechanics model, in combination with the average rule for X-ray attenuation coefficients, predicts a quasi-linear relationship between axial Young's modulus and HU, and highly nonlinear relationships for both circumferential and radial Young's moduli as well as for the shear moduli in all principal material directions. Corresponding whole-organ Finite Element analyses of a partially dentulous human mandible characterized by atrophy of the alveolar ridge show that volumetric strain concentrations/peaks within the organ are decreased when considering material anisotropy, and increased when considering material inhomogeneity.