The exploration of the NiX(2)/py(2)CO/Et(3)N (X = F, Cl, Br, I; py(2)CO = di-2-pyridyl ketone; Et(3)N = triethylamine) reaction system led to the tetranuclear [Ni(4)Cl(2){py(2)C(OH)O}(2){py(2)C(OMe)O}(2)(MeOH)(2)]Cl(2)·2Et(2)O (1·2Et(2)O) and [Ni(4)Br(2){py(2)C(OH)O}(2){py(2)C(OMe)O}(2)(MeOH)(2)]Br(2)·2Et(2)O (2·2Et(2)O) and the trinuclear [Ni(3){py(2)C(OMe)O}(4)]I(2)·2.5MeOH (3·2.6MeOH), [Ni(3){py(2)C(OMe)O}(4)](NO(3))(0.65)I(1.35)·2MeOH (4·2MeOH) and [Ni(3){py(2)C(OMe)O}(4)](SiF(6))(0.8)F(0.4)·3.5MeOH (5·3.5MeOH) aggregates. The presence of the intermediate size Cl(-) and Br(-) anions resulted in planar tetranuclear complexes with a dense hexagonal packing of cations and donor atoms (tetramolybdate topology) where the X(-) anions participate in the core acting as bridging ligands. The F(-) and I(-) anions do not favour the above arrangement resulting in triangular complexes with an isosceles topology. The magnetic properties of 1-3 have been studied by variable-temperature dc, variable-temperature and variable-field ac magnetic susceptibility techniques and magnetization measurements. All complexes are high-spin with ground states S = 4 for 1 and 2 and S = 3 for 3.
Read full abstract