Developing novel adsorbent to capture organic contaminants from wastewater rapidly and efficiently is highly desirable for waste treatment and environmental restoration. Herein, we reported a new amino-rich spherical adsorbent (PZS-PEI) for highly-efficient uptake of anionic dyes from aqueous solution. The PZS-PEI adsorbent was fabricated through a two-step process including synthesis of PZS-Cl microspheres via room temperature polymerization of hexachlorocyclotriphosphazene with bis(4-hydroxyphenyl) sulfone and subsequent surface grafting reaction of PZS-Cl microspheres using branched polyethyleneimine (PEI). The microstructure of as-obtained PZS-PEI microspheres was fully characterized by scanning electron microscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, zeta potential, and N2 adsorption test. The adsorption performance of the PZS-PEI microspheres towards organic dyes was evaluated through carrying out a series of studies including various influence factor analysis, adsorption isotherm, kinetics, and thermodynamics. Results show that the PZS-PEI adsorbent owned good adsorption selectivity towards anionic dyes, and the maximum adsorption capacities for methyl orange (MO), acid chrome blue K, eosin-Y reached 190.29, 152.90, and 92.34 mg/g at 25 °C, respectively. In addition, the uptake behavior of organic dye by the PZS-PEI adsorbent conformed to Freundlich isotherm and pseudo-second order kinetic model, and the adsorption process followed a three-stage intraparticle diffusion mode with an endothermic and spontaneous characteristic. Electrostatic interaction and hydrogen bonding were responsible for the highly-efficient adsorption of the PZS-PEI adsorbent towards typical anionic dye MO.