In the present work, the recovery of phosphorus and fluorine from process water generated in a water based direct physical recycling process of Li-ion batteries has been studied. The recycling process considered in this work produces significant amounts of process water, which is generated during the opening of the batteries by means of electro-hydraulic fragmentation and the subsequent sorting of the components in aqueous solution. This process produces between 21.6 L and 30.3 L of process water per kg of batteries with a total phosphorus and a total fluorine concentration of 60–85 mg/L and 120–470 mg/L, respectively. Currently, the process water has to be disposed of as hazardous waste. The goal is to discharge the wastewater into the sewer system. For this the total phosphorus and total fluorine concentration must be reduced. The process water is mainly contaminated by the released electrolyte consisting of organic carbonates and conducting salts. 31-P and 19-F NMR shows conclusively that no hydrolysis takes place in this process water. The phosphorus is present exclusively in the form of the complex anion PF6- and fluorine as F-, namely as FSI- from the conducting salt LiFSI and PF6- from the conducting salt LiPF6. In order to meet the regulatory requirements for discharge into the sewage system, 70.4% of the phosphorus and 89.3% of the fluorine must be removed. The conducting salts are hydrolyzed by adding acid and thereby phosphate and fluoride are precipitated. After critical and valuable materials are recovered the process water can be discharged into the sewer system.
Read full abstract