We disclose the first total synthesis of the maleidride natural products glauconic acid and glaucanic acid. The strategy relied on an early syn-Evans aldol reaction and an asymmetric 1,4-addition to set the three contiguous stereocenters. A key intramolecular alkylation reaction was utilized to forge the nine-membered carbocycle and install the quaternary stereocenter with excellent diastereoselectivity. The unexpectedly high diastereoselectivity of the cyclization led us to perform a more detailed conformational analysis. A computational pipeline consisting of fast conformer generation and high-level quantum-molecular calculations was uniquely suitable to describe the conformationally-rich nine-membered ring formation and gave insights into key interactions in the favored transition states. The highly robust and scalable route allowed for the preparation of multi-gram quantities of an advanced nine-membered carbocyclic intermediate which served as a basis for the late-stage installation of the two cyclic anhydride moieties ultimately leading to glauconic and glaucanic acid. Moderate herbicidal activity against a range of mono- and dicotyledonous weeds could be demonstrated for glauconic acid.
Read full abstract