Soil aggregate size, which is a proxy used to guide agricultural decisions and tillage management, can be estimated using optical remote sensing techniques. However, limited investigation has been conducted into the potential of using a physical model to retrieve soil aggregate size (< 2 mm) from different types of soil. This study is based on the multi-angular spectral measurements of seven soil samples from five soil types with 14 aggregate size fractions collected in Northeast China, three versions of the Hapke model were inverted using the Bayesian method. The findings confirmed that all three versions of the Hapke model can well characterize the angular reflection characteristics of all soil samples with different aggregate sizes. The inverted photometric parameters such as single scattering albedo ω, shape parameter b, and asymmetry parameter c were found to be sensitive to soil aggregate size, but the relationships rely on soil types because of the dependence of parameters related to soil composition. In order to obtain a general model that can be applied to different types of soil, the ratio of parameters (RoP) = (b + c)/ω, which is controlled by the external structure of soil aggregates, was proposed to retrieve the aggregate size from different soil types. Results show that the RoP can robustly capture the aggregate size of the soil with high accuracy and is insensitive to soil types. The combination of photometric parameters related to soil aggregate size provides a new method for retrieving the structural properties of the soil by eliminating interfering factors.
Read full abstract