Objective assessments of shoulder motion are paramount for effective rehabilitation and evaluation of surgical outcomes. Inertial Measurement Units (IMU) have demonstrated promise in providing unbiased movement data. This study is dedicated to evaluating the concurrent construct validity and accuracy of a wearable IMU-based sensor system, called 'Motion Shirt', for the assessment of humero-thoracic motion arcs in patients awaiting shoulder replacement surgery. This evaluation was conducted by comparing Motion Shirt data with the Dartfish Motion Analyzer software during the Functional Impairment Test-Hand and Neck/Shoulder/Arm (FIT-HaNSA) test. Thirteen patients (age > 50), who were awaiting shoulder replacement surgery, were recruited. The Motion Shirt was employed to measure angular humero-thoracic movements in two planes during the FIT-HaNSA test. Simultaneously, two cameras recorded the participants' movements to provide reference data. Bland-Altman plots were generated to visualize agreement between the Motion Shirt and the reference data obtained from the Dartfish Motion Analyzer software. The data analysis on Bland-Altman plots revealed a substantial level of agreement between the Motion Shirt and Dartfish analysis in measuring humero-thoracic motion. In Task-1, no significant systematic errors were exhibited, with only 3.27% and 2.18% of points exceeding the limits of agreement (LOA) in both elevation and the Plane of Elevation (POE), signifying a high level of concordance. In Task-2, a high level of agreement was also observed in Elevation, with only 3.8% of points exceeding the LOA. However, 5.98% of points exceeded LOA in POE for Task-2. In Task-3, focused on sustained overhead activity, the Motion Shirt showed strong agreement with Dartfish in Elevation (2.44% points exceeded LOA), but in POE, 7.32% points exceeded LOA. The Motion Shirt demonstrated a robust concordance with Dartfish Motion Analyzer system in assessing humerothoracic motion during the FIT-HaNSA test. These results affirm the Motion Shirt's suitability for objective motion analysis in patients awaiting shoulder replacement surgery.
Read full abstract