Methane is considered to be a cubic structure I (CS-I) clathrate hydrate former, although in a number of instances, small amounts of structure II (CS-II) clathrate hydrate have been transiently observed as well. In this work, solid-state magic angle spinning 13C NMR spectra of methane hydrate formed at low temperatures inside silica-based nanoporous materials with pores in the range of 3.8-20.0nm (CPG-20, Vycor, and MCM-41) show methane in several different environments. In addition to methane encapsulated in the dodecahedral 512 (D) and tetrakaidecahedral 51262 (T) cages typical of the CS-I clathrate hydrate phase, methane guests in pentakaidecahedral 51263 (P) and hexakaidecahedral 51264 (H) cages are also identified, and these appear to be stabilized for extended periods of time. The ratio of methane guests among the D and T cages determined from the line intensities is significantly different from that of bulk CS-I samples and indicates that both CS-I and CS-II are present as the dominant species. This is the first observation of methane in P cages, and the possible structures in which they could be present are discussed. Broad and relatively strong methane peaks, which are also observed in the spectra, can be related to methane dissolved in an amorphous component of water adjacent to the pore walls. Nanoconfinement and interaction with the pore walls clearly have a strong influence on the hydrate formed and may reflect species present in the early stages of hydrate growth.