Tumor angiogenesis is critical for tumor metastasis by providing oxygen, nutrients, and metastatic pathways. As a potential anti-angiogenic agent, Dihydroartemisinin (DHA) can effectively inhibit tumor metastasis. However, the mechanism how it regulates angiogenesis to affect tumor metastasis has not been fully clarified. To investigate the mechanisms of how DHA regulates melanoma progression. In this study, bioinformatics methods were used to analyze the correlation between angiogenesis and melanoma metastasis. Then, B16F10, A375, HUVECs and mouse metastasis models were adapted to clarify the inhibition of DHA in melanoma. GESA analysis revealed melanoma metastasis significantly positive correlated with angiogenesis. Meanwhile, DHA significantly decreased melanoma nodules and lung wet weight in metastatic tumor mice, and inhibited the expression of the angiogenic marker CD31 in vitro and in vivo. Similarly, DHA inhibited the expression of the angiogenic signal molecule VEGFR2 in A375 and B16F10 cells, and significantly suppressed the formation of their tubular structures. DHA-treated supernatants significantly inhibited the tubule-forming ability as well as lateral and longitudinal migration ability of HUVECs compared with untreated melanoma cell supernatants. Screening yielded the angiogenic pathways HIF-1α/VEGF, PI3K/ATK/mTOR associated with melanoma metastasis, and DHA may inhibit tumor metastasis by inhibiting these angiogenic pathways in melanoma cells to inhibit tumor metastasis. Further non-targeted metabolomics analysis revealed that DHA-treated model mice produced differential metabolites that were also associated with angiogenic pathways. DHA inhibits melanoma invasion and metastasis by mediating angiogenesis. These results have important implications for the potential use of DHA in treatment of melanoma.