Arecoline induces oral submucous fibrosis (OSF) via promoting the reactive oxygen species (ROS). Angiotensin (1-7) (Ang-(1-7))protects against fibrosis by counteracting angiotensin II (Ang-II) via the Mas receptor. However, the effects of Ang-(1-7) on OSF remain unknown. NOD-like receptors (NLRs) family pyrin domain containing 3 (NLRP3) inflammasome is identified as the novel mechanism of fibrosis. Whereas the effects of arecoline on NLRP3 inflammasome remain unclear. We aimed to explore the effect of Ang-(1-7) on NLRP3 inflammasome in human oral myofibroblasts. In vivo, activation of NLRP3 inflammasomes with an increase of Ang-II type 1 receptor (AT1R) protein level and ROS production in human oral fibrosis tissues. Ang-(1-7) improved arecoline-induced rats OSF, reduced protein levels of NADPH oxidase 4 (NOX4) and the NLRP3 inflammasome. In vitro, arecoline increased ROS along with upregulation of the angiotensin-converting enzyme (ACE)/Ang-II/AT1R axis and NLRP3 inflammasome/interleukin-1β axis in human oral myofibroblasts, which were reduced by NOX4 inhibitor VAS2870, ROS scavenger N-acetylcysteine, and NOX4 small interfering RNA (siRNA). Furthermore, arecoline induced collagen synthesis or migration via the Smad or RhoA-ROCK pathway respectively, which could be inhibited by NLRP3 siRNA or caspase-1 blocker VX-765. Ang-(1-7) shifted the balance of RAS toward the ACE2/Ang-(1-7)/Mas axis, inhibited arecoline-induced ROS and NLRP3 inflammasome activation, leading to attenuation of migration or collagen synthesis. In summary, Ang-(1-7) attenuates arecoline-induced migration and collagen synthesis via inhibiting NLRP3 inflammasome in human oral myofibroblasts.