The ability to tune the electronic properties of molecular arrays is an important step in the development of molecule-scale electronic devices. However, control over internal device charge distributions by tuning interactions between molecules has proved challenging. Here, we show that gate-tunable charge patterning can occur in one-dimensional molecular arrays on graphene field-effect transistors. One-dimensional molecular arrays are fabricated using an edge-templated self-assembly process that allows organic molecules (F4TCNQ) to be precisely positioned on graphene devices. The charge configurations of the molecular arrays can be reversibly switched between different collective charge states by tuning the graphene Fermi level via a back-gate electrode. Charge pinning at the ends of the molecular arrays allows the charge state of the entire array to be controlled by adding or removing an edge molecule and changing the total number of molecules in an array between odd and even integers. Charge patterns altered in this way propagate down the array in a cascade effect, allowing the array to function as a charge-based molecular shift register. An extended multi-site Anderson impurity model is used to quantitatively explain this behaviour. One-dimensional molecular arrays on graphene field-effect transistors can be reversibly switched between different periodic charge states by tuning the graphene Fermi level via a back-gate electrode and by manipulating individual molecules, allowing them to function as a nanoscale shift register.
Read full abstract