Endplate osteochondritis is considered one of the major causes of intervertebral disc degeneration (IVDD) and low back pain. Menopausal women have a higher rate of endplate cartilage degeneration than similarly aged men, but the related mechanisms are still unclear. Subchondral bone changes, mainly mediated by osteoblasts and osteoclasts, are considered an important reason for the degeneration of cartilage. This work explored the role of osteoclasts in endplate cartilage degeneration, as well as its underlying mechanisms. A rat ovariectomy (OVX) model was used to induce estrogen deficiency. Our experiments indicated that OVX significantly promoted osteoclastogenesis and anabolism and catabolism changes in endplate chondrocytes. OVX osteoclasts cause an imbalance between anabolism and catabolism in endplate chondrocytes, as shown by a decrease in anabolic markers such as Aggrecan and Collagen II, and an increase in catabolic markers such as a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and matrix metalloproteinases (MMP13). Osteoclasts were also confirmed in this study to be able to secrete HtrA serine peptidase 1 (HTRA1), which resulted in increased catabolism in endplate chondrocytes through the NF-κB pathway under estrogen deficiency. This study demonstrated the involvement and mechanism of osteoclasts in the anabolism and catabolism changes of endplate cartilage under estrogen deficiency, and proposed a new strategy for the treatment of endplate osteochondritis and IVDD by targeting HTRA1.
Read full abstract