Abstract A multilayer ocean model that is physically simple and computationally efficient is developed for studies of competition and interaction among deep-water sources in determining ocean circulation. The model is essentially geostrophic and hydrostatic in the ocean interior with Rayleigh friction added in boundary-layer and equatorial regions. A stably stratified density structure is specified at static equilibrium, and cross-isopycnal mixing is parameterized as a diffusive flux. The model is forced by latitudinally varying Ekman pumping velocities at the base of the ocean surface Ekman layer and localized deep-water sources. A four-layer version of the model has been run in a rectangular basin with 5000-m depth, extending from 65°S to 65°N latitude and covering 70 degrees of longitude. The four layers mimic the major water masses observed in the Atlantic Ocean: thermocline water, intermediate water, North Atlantic Deep Water (NADW), and Antarctic Bottom Water (AABW). For forcing corresponding to the...
Read full abstract