The recent discovery by Ibata et al. of a vast thin disc of satellites (VTDS) around M31 offers a new challenge for the understanding of the Local Group properties. This comes in addition to the unexpected proximity of the Magellanic Clouds (MCs) to the Milky Way (MW), and to another vast polar structure (VPOS), which is almost perpendicular to our Galaxy disc. We find that the VTDS plane is coinciding with several stellar, tidally induced streams in the outskirts of M31, and, that its velocity distribution is consistent with that of the giant stream (GS). This is suggestive of a common physical mechanism, likely linked to merger tidal interactions, knowing that a similar argument may apply to the VPOS at the MW location. Furthermore, the VTDS is pointing towards the MW, being almost perpendicular to the MW disc, as the VPOS is. We compare these properties to the modelling of M31 as an ancient, gas-rich major merger, which has been successfully used to predict the M31 substructures and the GS origin. We find that without fine tuning, the induced tidal tails are lying in the VTDS plane, providing a single and common origin for many stellar streams and for the vast stellar structures surrounding both the MW and M31. The model also reproduces quite accurately positions and velocities of the VTDS spheroidal dwarfs. Our conjecture leads to a novel interpretation of the Local Group past history, as a gigantic tidal tail due to the M31 ancient merger is expected to send material towards the MW, including the MCs. Such a link between M31 and the MW is expected to be quite exceptional, though it may be in qualitative agreement with the reported rareness of MW–MCs systems in nearby galaxies.
Read full abstract