The reactive uptake of N2O5 on sea-spray aerosol plays a key role in regulating the NOx concentration in the troposphere. Despite numerous field and laboratory studies, a microscopic understanding of its heterogeneous reactivity remains unclear. Here, we use molecular simulation and theory to elucidate the chlorination of N2O5 to form ClNO2, the primary reactive channel within sea-spray aerosol. We find that the formation of ClNO2 is markedly enhanced at the air-water interface due to the stabilization of the charge-delocalized transition state, as evident from the formulation of bimolecular rate theory in heterogeneous environments. We explore the consequences of the enhanced interfacial reactivity in the uptake of N2O5 using numerical solutions of molecular reaction-diffusion equations as well as their analytical approximations. Our results suggest that the current interpretation of aerosol branching ratios needs to be revisited.