Due to the complexity and dynamics of underground construction projects, safety risk management has experienced significant challenges restricting the sustainable development of underground space. The research on risk causal chains and risk coupling has yet to reveal the dynamic interactive characteristics of these risk factors and their temporal relationships over time. This study utilized a complex system view for safety risk analysis, using 37 accident investigation reports of underground construction projects. Combined with two novel and emerging analytical methods, temporal qualitative comparative analysis and crisp-set qualitative comparative analysis, this study discusses the temporal relationship of risk factors to the cause of accidents and explores the multi-actor coupling characteristics of management risk. The findings indicate that (1) compared with general construction projects, underground construction should pay more attention to management safety risks because they have an obvious time lag effect expressed in all accident causation paths, namely, preceding management risk, management risk, and machine/material risk cross-concurrently, and management risk initiation and (2) underground construction project management risks have three key main paths, namely, single-actor-dominated management deficiency (supervisors, owners, and subcontractors that cause management risks as a single-core actor) and dual-actor-dominated management deficiency (owner and subcontractor as dual core actors of management risk). Multi-actor-dominated management deficiency (owners, subcontractors, and supervisors are the multiple core actors of management risk). This study thus developed a temporal governance framework of underground construction safety risks based on the synergy of multi-actors and proposed risk governance strategies, such as synergistic multi-actor governance, to consider the temporal relationship of safety risk. This study further reveals the temporal and coupling characteristics of safety risks to enrich the risk casual chain theory and risk coupling theory and establish a systematic risk analysis framework for new guidance for safety and risk management for underground construction projects.