Abstract

ABSTRACT Digital twin railway is a pivotal foundation for the intelligent construction and maintenance of railway engineering projects within extensive open spaces. Its essence is the integrated representation and association management of multi-granularity spatiotemporal data, executable analysis models, and professional knowledge. These elements are characterized by the prominent characteristics of multi-source, heterogeneity, and massive volume. However, current decentralized and independent management strategies often neglect the dynamic coupling relationships between them, and numerous multi-path joins and conversion aggregation operations exist across various spatial scale applications. Consequently, this results in challenges such as the inability to dynamically couple data-model-knowledge and conduct global association retrieval, thereby limiting the potential for real-time analysis and intelligent application capabilities. To address these problems, we first constructed a tripartite graph model ( DMK − Graph model ) that explicitly associates temporal, spatial, and interactive relationships. Subsequently, an association management architecture was proposed, accompanied by a global association graph index ( DMK − Graph index ) and a global-local indexing mechanism. Finally, a prototype system for railway data-model-knowledge association management was developed. The effectiveness of the distributed association management method was demonstrated by employing a case study of high-temperature safety risk analysis in railway tunnel engineering with multi-physics field coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call