Circular and annular elastic plates have wide applications as essential elements in various engineering structures and products demanding accurate analysis of their vibrations. At higher frequencies, the analysis of vibrations needs appropriate equations, as shown by the Mindlin plate equations for rectangular plates with tailored applications for the analysis of quartz crystal resonators. Naturally, there are equally strong demands for the equations and applications in circular and annular plates with the consideration of higher-order vibration modes. By following the procedure established by Mindlin based on displacement expansion in the thickness coordinate, a set of higher-order equations of vibrations of circular and annular plates are derived and truncated for comparisons with classical and first-order plate equations of circular plates. By utilizing these equations, coupled thickness-shear and flexural vibrations of circular and annular plates are analyzed for vibration frequencies and mode shapes.