Co-relations of friction factor and Nusselt number for plain tubes have been widely developed, but less analysis has been done for tubes with wavy surfaces. This paper uses the Computational Fluid Dynamics (CFD) tool for the analysis of heat transfer and pressure drop in wavy-walled tubes, which can be utilized as a heating element for fluids. An investigation was done for the effect of Reynolds number (Re) and wavy-walled tube geometry on friction factor and Nusselt number of laminar and turbulent flow inside wavy-walled tubes. The numerical results and experimental comparison indicate that heat transfer and pressure drop for water are significantly affected by wavy-walled tube parameters and flow Reynolds number. These wavy-walled tubes are capable of increasing the heat transfer to or from a fluid by an order of magnitude but at an expense of higher pumping power. This ratio was found to remain at the minimum at a wave factor of 0.83 for 34 < Re < 3500 and maximum at a wave factor of 0.15 for 200 < Re < 17,000. New correlations of friction factor and Nusselt number based on wavy-walled tube parameters are proposed in this paper, which can serve as design equations for predicting the friction factor and heat transfer in wavy-walled tubes under a laminar and turbulent regime with less than 10% error. The quantitative simulation results match the experimental results with less than 15% error. The qualitative comparison with the experiments indicates that the simulations are well capable of accurately predicting the circulation zones within the bulgy part of the tubes.
Read full abstract