Composite structures with bends are widely used in aerospace and industrial sectors. However health monitoring of such structures is challenging due to their complex topographical features. Recent literature shows that bends in composite laminates can confine and guide ultrasonic energy along their length, known as feature-guided waves (FGW). This article demonstrates a fiber Bragg grating based technique using FGW modes for defect detection and identification in bent composite laminates. In addition, the effects of defect depth and excitation frequency on the FGW mode reflection coefficient are reported using 3D finite element simulations. Physical insight into the reflection behavior is discussed based on an analysis of mode interaction with part-thickness cracks.
Read full abstract