The aim of this study was to determine the relative contributions of various potential food sources of human listeriosis and to identify source-specific risk factors, at exposure level, for human Listeria monocytogenes (Lm) infection. To achieve this, available Lm isolates from human cases (n = 756) and food/animal sources (n = 950) from national surveillance systems in the Netherlands (2010−2020) were whole genome sequenced. Additionally, questionnaire-based exposure data for human cases was collected. Source attribution analysis was performed using a Random Forest model based on core-genome multilocus sequence typing (cgMLST). Risk factors for human Lm infection of cattle, chicken and seafood origin were determined using beta regression analysis on the cgMLST-based attribution estimates. Results indicated that the 756 human Lm isolates were mainly attributed to cattle (62.3 %), chicken (19.4 %), and seafood (16.9 %). Specifically, fresh meat (86.2 %), including fresh bovine meat (43.7 %) and fresh chicken meat (39.3 %), accounted for most cases. These attributions stemmed from Lm contamination of either the food products or their production environments. Consumption of steak tartare and smoked salmon was associated with an increased risk of human Lm infections attributed to cattle and seafood, respectively, while no specific risk factors for chicken-borne listeriosis were identified. This study indicated that Lm isolates of cattle origin, particularly those from fresh bovine meat and associated production environments, are estimated to be the primary cause of human listeriosis in the Netherlands. This aligns with several other European source attribution studies on Lm. Moreover, the identified risk factors for human Lm infection from cattle (i.e. steak tartare) and seafood (i.e. smoked salmon) clearly indicated their attributable sources. This joint analysis of core genome and epidemiological data provided novel insights into the origins and transmission pathways of human listeriosis.