Deep learning (DL) has become an indispensable tool in hyperspectral data analysis, automatically extracting valuable features from complex, high-dimensional datasets. Super-resolution reconstruction, an essential aspect of hyperspectral data, involves enhancing spatial resolution, particularly relevant to low-resolution hyperspectral data. Yet, the pursuit of super-resolution in hyperspectral analysis is fraught with challenges, including acquiring ground truth high-resolution data for training, generalization, and scalability. The pressing issue of extended spectral acquisition times, notably for high-resolution scans, is a significant roadblock in hyperspectral imaging. Super-resolution methods offer a promising solution by providing higher spatial resolution data to expedite data collection and yield more efficient outcomes. This paper delves into a practical application of these concepts using Raman imaging, where spectral acquisition times can be prohibitively long. In this context, DL-based super-resolution models demonstrate their efficacy by predicting and reconstructing high-resolution Raman data from low-resolution input, eliminating the need for resource-intensive high-resolution scans. While previous work often relied on substantial high-resolution datasets, this study showcases the ability to achieve similar outcomes even with limited data, presenting a more practical and cost-effective approach. The results offer a glimpse into the transformative potential of this technology to streamline hyperspectral imaging applications by saving valuable time and resources through the successful generation of high-resolution data from low-resolution inputs.
Read full abstract