This paper is concerned with the dynamic analysis of flexible,nonlinear multibody systems undergoing intermittent contacts. Contact isassumed to be of finite duration, and the forces acting between thecontacting bodies which can be either rigid or deformable are explicitlycomputed during simulation. The modeling of contact consists of threeparts: a number of holonomic constraints that define the candidatecontact points on the bodies, a unilateral contact condition which istransformed into a holonomic constraint by the addition of a slackvariable, and a contact model which describes the relationship betweenthe contact force and the local deformation of the contacting bodies.This work is developed within the framework of energy preserving anddecaying time integration schemes that provide unconditional stabilityfor nonlinear, flexible multibody systems undergoing intermittentcontacts.
Read full abstract