This paper analyzes the effect of fluid flow characteristics on the convection heat transfer for mini-helically coiled tubes (HCT) using supercritical carbon dioxide (CO2) as a natural refrigerant. Two experimental cases have studied in this work for mini-helically coiled tubes at different diameters with different coil pitches for analyzing the convection heat transfer with flow resistance. In the first case, the inner tube diameter, coil diameter and coil pitch were 5 mm, 200 mm and 10 mm respectively, while 10 mm, 100 mm and 5 mm were for the second case. Moreover, this work has also investigated the influence of frictional pressure drop, heat flux, friction factor and mass flux on dimensionless exergy destruction. The work environments were 300-500 K as an inlet temperatures range, 200-2000 Kg / (m2. s) as a mass heat fluxes range, 50,000-500,000 as a Reynolds number (Re) range and 50-200 Kw/m2 as an inner heat fluxes range. As a result, a large effect has been observed for dimensionless exergy destruction compared with the flow friction of CO2 which induced by heat transfer irreversibility. On the other point of view, a good sensitivity of optimal Re with the tube dimeter and mass flux also noticed compared with the heat flux. At a suitable range for Re, smallest and best exergy destruction also noticed for the tube diameters. A correlation has for the optimal Reynolds number as function of main dimensionless parameters related to wall heat flux, mass flux, fluid properties and geometric dimensions is proposed. Characteristics of the fluid flow had influenced significantly by mass and heat fluxes. In the future, the collected experimental data can be employed in order to design and improve the refrigeration conditioning performance for exchangers and other systems such as heat pumps.