Photonic crystal is a kind of device which can convert a chemical signal into an optical signal and is commonly used in sensing and detection. The maximum reflection wavelength representing the photonic band gap has been the most common converting mode in analytical usage which however discard too much valuable chemical information. In this work, we established two additional modes for mining chemical information more deeply in time and space as the sensing information to distinguish analytes. They are respectively based on dynamic analysis of the spectrum shift and the distinction of the RGB partition block value information of optical image. The molecular imprinting sensing mechanism worked well on three organophosphorus compounds to the detection limit of 10−4 M. The principle component analysis of above data did present a good discrimination of organophosphorus analytes from interfering counter anions to a low detection limit of 10−6 M. To make the detection more convenient and to achieve real-time on-site detection, we have designed the portable photonic crystal signal acquisition kit. Together with the mobile terminal, the kit connects the optical image collected on site, the algorithm working on the cloud and the input/output interactive interface of users in detection. The methods were constructed on an example made of a three-dimensional molecularly imprinted photonic crystal hydrogels sensing unit targeting on organo-phosphides.
Read full abstract