Most host-parasite associations are explained by phylogenetically conservative capabilities for host utilization, and therefore parasite switches between distantly related hosts are rare. Here we report the first evidence of a parasitic spillover of the burrowing sea anemone Edwardsiella carnea from the invasive ctenophore Mnemiopsis leidyi to two scyphozoan hosts: the native Mediterranean barrel jellyfish Rhizostoma pulmo and the invasive Indo-Pacific nomad jellyfish Rhopilema nomadica, collected from the Eastern Mediterranean Sea. Edwardsiella carnea planulae found in these jellyfish were identified using molecular analyses of the mitochondrial 16S and nuclear 18S rRNA genes. Overall, 93 planulae were found on tentacles, oral arms, and inside of the gastrovascular canals of the scyphomedusae, whereas no infection was observed in co-occurring ctenophores. DNA metabarcoding approach indicated seasonal presence of Edwardsiella sp. in the Eastern Mediterranean mesozooplankton, coinciding with jellyfish blooms in the region. Our findings suggest a non-specific parasitic relationship between Edwardsiella carnea and various gelatinous hosts based on shared functionality rather than evolutionary history, potentially driven by shifts in host availability due to jellyfish blooms. This spillover raises questions about the ecological impacts of parasitism on native and invasive scyphozoan hosts and the potential role of Edwardsiella in controlling their populations.