Food-waste solid residue is the remaining solid after food waste treatment, with high yield, high solid content, high protein and fiber content. Effective pretreatment is necessary to improve the efficiency of hydrolysis and acidification for anaerobic digestion of food-waste solid residue. In this study, fluorescence spectroscopy coupled with parallel factor analysis were used to insight into the mechanism of food-waste solid residue during three pretreatments (alkali, thermal and alkali-thermal). Pretreatments increased the solubility of lignocellulosic substrate and destroyed structure of starch, while lignocellulosic analogs were effectively cracked, changing the composition and improving the degradability. Soluble chemical oxygen demand, soluble protein and soluble polysaccharide concentrations were increased by 144.60%, 350.57% and 138.72% after pretreatment under the condition of 120 °C + 2% CaO, respectively. Three-dimensional fluorescence spectra showed the region of maximum fluorescence intensity under alkali-thermal pretreatments, indicating chemical bonds (such as OC–C) were easier broken and the solubility of organic substances were increased. Three main fluorescence components were obtained by parallel factor analysis, which were humic acid-like, lignocellulose-like and protein-like, respectively, while the lignocellulose-like had the maximum Fmax value. The fluorescence intensity of samples under alkali-thermal pretreatment varied in the range from 59.48 × 105 to 13.18 × 106, which was an increase of 174.27%–507.74% over the control (21.68 × 105), indicating that alkali-thermal pretreatment observably accelerated the breaking of chemical bonds, and thus promoted the dissolution of organic matter. This study deeply revealed the mechanism of alkali-thermal pretreatment of food-waste solid residue, which is of great significance for efficient resource utilization of food waste and food-waste solid residue.