Total glucosides of paeony (TGP) have been investigated for their effects on cardiomyocyte hypertrophy induced by angiotensin II (Ang II). In this study, rat cardiomyocyte H9c2 cells were treated with various doses of TGP (0, 12.5, 25, 50, 100, 200, and 400 μmol/L), and cell viability was assessed using the MTT method to determine an optimal dose. To establish the cardiomyocyte hypertrophy model, Ang II (1 μmol/L) was used. The experimental groups included the control (Ctrl) group, the hypertrophy group (Ang II), the TGP treatment group (TGP+Ang II), and a combined treatment group (TGP+Ang II+LY), where LY294002, a PI3K/Akt inhibitor, was used. The surface area of H9c2 cells was analyzed using image analysis software, and apoptosis was assessed via flow cytometry. Western blotting was employed to evaluate markers related to cell proliferation, cardiac hypertrophy, apoptosis, and autophagy, as well as the phosphorylation of the PI3K/Akt pathway. The results revealed that Ang II inhibited cell viability and increased cell surface area, apoptosis, and autophagy, all of which were significantly reversed by TGP treatment. Moreover, the addition of LY294002 partially attenuated the effects of TGP, reducing cell viability and promoting hypertrophy, apoptosis, and autophagy. Additionally, Ang II reduced PI3K/Akt signaling activity, while TGP restored it. LY treatment reversed the effects of TGP and suppressed the PI3K/Akt pathway. In conclusion, TGP improves cardiomyocyte hypertrophy induced by Ang II by activating the PI3K/Akt signaling pathway.
Read full abstract